利用 852 nm 导引光产生的偶极势阱将经激光冷却的87Rb 冷原子团装载并导引进入反谐振空芯光纤中。 提出了空芯光 纤内原子系综的光学深度理论模型,利用该模型对光学深度透射谱进行拟合获得谐振光学深度。 在此基础上利用飞行时间法 估算空芯光纤内原子团的径向温度和原子数目等参数。 系统性地实验研究了偶极势阱深度、原子团初始温度、原子团初始空间 位置等条件对导引结果的影响,确定了空芯光纤导引冷原子团实验的参数优化方向,为基于空芯光纤的冷原子干涉仪技术奠定 了基础。
Laser-cooled 87Rb atoms are loaded from free space into anti-resonant hollow-core fibers ( AR-HCF) using a dipole trap generated by an 852 nm laser. We propose a theoretical model of the optical depth of atomic ensemble inside hollow-core fibers. The resonant optical depth ( ODres ) is obtained by fitting the transmission spectrum with the theoretical model. Time-of-flight ( TOF) measurement is used to estimate the radial temperature of the atomic ensemble and the number of atoms inside the fiber. The influence of the trapping depth, the initial temperature, and the position of the atomic cloud on the number of guided atoms are systematically studied, which guide the parameters optimization direction of atoms inside HCF. This work provides the foundation for the development of atom interferometers inside HCF.