Logo 知识与财富的链接
基于贝叶斯网络信息融合的直流配电网故障诊断方法

基于贝叶斯网络信息融合的直流配电网故障诊断方法

ISSN:1674-3415
2024年第52卷第5期
应用研究
王 鹤,韦 搏,李石强,于华楠,边 竞,仇华华 WANG He, WEI Bo, LI Shiqiang, YU Huanan, BIAN Jing, QIU Huahua
现代电力系统仿真控制与绿色电能新技术教育部重点实验室(东北电力大学),吉林 吉林 132012 Key Laboratory of Modern Electric Power System Simulation and Control & Renewable Energy Technology (Northeast Electric Power University), Ministry of Education, Jilin 132012, China

新型直流配电系统故障期间暂态特征复杂多变,继电保护存在拒动和误动情况。为了避免继电保护的不正确动作对故障诊断产生影响,提出一种基于贝叶斯网络信息融合的直流配电网故障诊断方法。首先,对传统继电保护贝叶斯网络模型进行改进,同时考虑直流配电网故障限流策略,分别构建保护动作信息、断路器动作信息和限流策略信息3种贝叶斯网络模型,对故障区域内各元件的故障概率进行初步评估。其次,利用D-S证据理论将各元件对应的故障概率信息进行融合,完成故障元件的判别。然后,应用故障元件对应的贝叶斯网络模型识别误动或拒动的保护装置与断路器,实现对直流配电网的故障诊断。最后,通过算例验证了所提故障诊断方法的可靠性以及准确性。

There are situations of complex and variable transient characteristics and rejection and misoperation of relay protection during faults in new DC distribution systems. To avoid the impact of incorrect relay protection actions on fault diagnosis, this paper presents a fault diagnosis method for a DC distribution network based on Bayesian network information fusion. First, the traditional relay protection Bayesian network model is improved, while considering the DC distribution network fault current limiting strategy, and three Bayesian network models of protection, circuit breaker and current-limiting strategy information are constructed respectively to make preliminary evaluation of the fault probability of each component in the fault area. Secondly, D-S evidence theory is used to fuse the corresponding failure probability information of each component to realize the identification of the faulty components. Then, the Bayesian network model corresponding to the faulty elements is applied to identify the protection devices and circuit breakers for misoperation or rejection to achieve fault diagnosis. Finally, the correctness and reliability of the proposed method are verified through an analysis of arithmetic cases.

认领
收 藏
点 赞
认领进度
0 %

发表评论

ISSN:1674-3415
2024年第52卷第5期
应用研究

用户信息设置