Logo 知识与财富的链接
基于最优多尺度集的形态学红外图像缺陷检测研究

基于最优多尺度集的形态学红外图像缺陷检测研究

ISSN:0254-0096
2022年第43卷第6期
康爽1,2, 陈长征1, 刘石3, 周勃1, 唐琬茹2 Kang Shuang1,2, Chen Changzheng1, Liu Shi3, Zhou Bo1, Tang Wanru2

图像增强在风力机叶片红外缺陷检测中具有重要应用,该文针对红外检测中图像清晰度低的问题,提出一种自适应迭代阈值加权的差分顶帽变换红外图像增强方法(AITWD top-hat)。首先,通过多尺度白顶帽与黑顶帽变换获得多组顶帽信息。其次,为获得更多的图像细节特征,采用对比度改善系数(contrast improvement ratio, CIR)作为阈值数,提出一种迭代阈值的图像加权方法,并对获得的最优尺度集图像进行融合,得到增强图像。最后,将该文所提方法与现有方法从定性和定量2个方面进行对比和验证。实验结果表明,该文方法不仅具有较好的图像细节增强效果,而且有效克服了传统形态学图像增强时稳定性差的问题,PSNR值和SSIM值分别提高了9.01%和9.07%。

Image enhancement is very important in infrared defect detection of wind turbine blades. Aiming at the problem of low image definition in infrared detection, an adaptive iterative threshold weighted difference top-hat transform infrared image enhancement method (AITWD top-hat) is proposed in this paper. Firstly, multiple groups of top-hat information are obtained by multi-scale white top-hat and black top-hat transformation. Secondly, in order to obtain more image detail features, using the Contrast improvement ratio(CIR) as the threshold function, an iterative threshold image weighting method is proposed, and the optimal scale set image is fused to obtain the enhanced image. Finally, the proposed method is compared and verified with the existing methods from both qualitative and quantitative aspects. The experimental results show that this method not only has good image detail enhancement effect, but also effectively overcomes the problem of poor stability in traditional morphological image enhancement, the PSNR value and SSIM value are increased by 9.01% and 9.07% respectively.

认领
收 藏
点 赞
认领进度
0 %

发表评论

ISSN:0254-0096
2022年第43卷第6期

用户信息设置