Logo 知识与财富的链接
基于DAWGAN-GP的磁共振图像重构方法研究

基于DAWGAN-GP的磁共振图像重构方法研究

ISSN:0372-2112
2000年第48卷第10期
学术论文
袁子晗1, 蒋明峰1, 李杨1, 支明豪1, 朱志军2 YUAN Zi-han1, JIANG Ming-feng1, LI Yang1, ZHI Ming-hao1, ZHU Zhi-jun2

本文提出了一种基于改进Wasserstein生成式对抗网络(De-aliasing Wasserstein Generative Adversarial Network with Gradient Penalty,DAWGAN-GP)的磁共振图像重构算法,该方法利用Wasserstein生成式对抗网络代替传统的生成式对抗网络,并结合梯度惩罚的方法提高训练速度,解决WGAN收敛缓慢问题.此外,为了有更好的重构效果,我们将感知损失,像素损失和频域损失引入至损失函数中进行网络训练.实验结果表明,对比现有的基于深度学习的磁共振图像重构算法,基于DAWGAN-GP的磁共振图像重构方法具有更好的重构效果,可获得更高的峰值信噪比(Peak Signal to Noise Ratio,PSNR)和更好的结构相似性(Structural Similarity Index Measure,SSIM).

In this paper,we propose an improved Wasserstein generative adversarial network (WGAN),de-aliasing Wasserstein generative adversarial network with Gradient Penalty (DAWGAN-GP),for magnetic resonance imaging (MRI) reconstruction.This method uses WGAN to replace the traditional GAN,and combined the gradient penalty to improve the training speed and to solve the slow convergence problem of WGAN.In addition,for better preservation of the fine structures in the reconstructed images,we incorporate perceptual loss,pixel loss and frequency loss into the loss function for training the network.Compared with other state-of-the-art deep learning methods for MR images reconstruction,DAWGAN-GP method outperforms all other methods and can provide superior reconstruction with improved peak signal to noise ratio (PSNR) and better structural similarity index measure (SSIM).

认领
收 藏
点 赞
认领进度
0 %

发表评论

ISSN:0372-2112
2000年第48卷第10期
学术论文

用户信息设置