Logo 知识与财富的链接

ISSN:1088-6826
1997年第125卷第8期
Jeno Szigeti

We construct the so-called right adjoint sequence of an $n\times n$ matrix over an arbitrary ring. For an integer $m\geq 1$ the right $m$-adjoint and the right $m$-determinant of a matrix is defined by the use of this sequence. Over $m$-Lie nilpotent rings a considerable part of the classical determinant theory, including the Cayley-Hamilton theorem, can be reformulated for our right adjoints and determinants. The new theory is then applied to derive the PI of algebraicity for matrices over the Grassmann algebra.

关键词:
Key words:
认领
收 藏
点 赞
认领进度
0 %

发表评论

ISSN:1088-6826
1997年第125卷第8期

用户信息设置